Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation (1111.2961v1)

Published 12 Nov 2011 in math.AP, math-ph, math.CA, math.FA, math.MP, and math.SP

Abstract: In this paper, some initial-boundary-value problems for the time-fractional diffusion equation are first considered in open bounded n-dimensional domains. In particular, the maximum principle well-known for the PDEs of elliptic and parabolic types is extended for the time-fractional diffusion equation. In its turn, the maximum principle is used to show uniqueness of solution to the initial-boundary-value problems for the time-fractional diffusion equation. The generalized solution in sense of Vladimirov is then constructed in form of a Fourier series with respect to the eigenfunctions of a certain Sturm-Liouville eigenvalue problem. For the one-dimensional time-fractional diffusion equation $$ (D_t{\alpha} u)(t) = \frac{\partial}{\partial x}(p(x) \frac{\partial u}{\partial x}) -q(x)\, u + F(x,t),\ \ x\in (0,l),\ t\in (0,T) $$ the generalized solution to the initial-boundary-value problem with the Dirichlet boundary conditions is shown to be a solution in the classical sense. Properties of the solution are investigated including its smoothness and asymptotics for some special cases of the source function.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)