Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bosonic and k-fermionic coherent states for a class of polynomial Weyl-Heisenberg algebras (1110.4799v1)

Published 21 Oct 2011 in quant-ph, math-ph, and math.MP

Abstract: The aim of this article is to construct `a la Perelomov and `a la Barut-Girardello coherent states for a polynomial Weyl-Heisenberg algebra. This generalized Weyl-Heisenberg algebra, noted A(x), depends on r real parameters and is an extension of the one-parameter algebra introduced in Daoud M and Kibler MR 2010 J. Phys. A: Math. Theor. 43 115303 which covers the cases of the su(1,1) algebra (for x > 0), the su(2) algebra (for x < 0) and the h(4) ordinary Weyl-Heisenberg algebra (for x = 0). For finite-dimensional representations of A(x) and A(x,s), where A(x,s) is a truncation of order s of A(x) in the sense of Pegg-Barnett, a connection is established with k-fermionic algebras (or quon algebras). This connection makes it possible to use generalized Grassmann variables for constructing certain coherent states. Coherent states of the Perelomov type are derived for infinite-dimensional representations of A(x) and for finite-dimensional representations of A(x) and A(x,s) through a Fock-Bargmann analytical approach based on the use of complex (or bosonic) variables. The same approach is applied for deriving coherent states of the Barut-Girardello type in the case of infinite-dimensional representations of A(x). In contrast, the construction of `a la Barut-Girardello coherent states for finite-dimensional representations of A(x) and A(x,s) can be achieved solely at the price to replace complex variables by generalized Grassmann (or k-fermionic) variables. Some of the results are applied to su(2), su(1,1) and the harmonic oscillator (in a truncated or not truncated form).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.