Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Wavelet transform and Radon transform on the Quaternion Heisenberg group (1110.3570v1)

Published 17 Oct 2011 in math.FA

Abstract: Let $\mathscr Q$ be the quaternion Heisenberg group, and let $\mathbf P$ be the affine automorphism group of $\mathscr Q$. We develop the theory of continuous wavelet transform on the quaternion Heisenberg group via the unitary representations of $\mathbf P$ on $L2(\mathscr Q)$. A class of radial wavelets is constructed. The inverse wavelet transform is simplified by using radial wavelets. Then we investigate the Radon transform on $\mathscr Q$. A Semyanistri-Lizorkin space is introduced, on which the Radon transform is a bijection. We deal with the Radon transform on $\mathscr Q$ both by the Euclidean Fourier transform and the group Fourier transform. These two treatments are essentially equivalent. We also give an inversion formula by using wavelets, which does not require the smoothness of functions if the wavelet is smooth.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube