Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 158 tok/s Pro
2000 character limit reached

The complexity of the fermionant, and immanants of constant width (1110.1821v2)

Published 9 Oct 2011 in cs.CC, cond-mat.str-el, and math.CO

Abstract: In the context of statistical physics, Chandrasekharan and Wiese recently introduced the \emph{fermionant} $\Ferm_k$, a determinant-like quantity where each permutation $\pi$ is weighted by $-k$ raised to the number of cycles in $\pi$. We show that computing $\Ferm_k$ is #P-hard under Turing reductions for any constant $k > 2$, and is $\oplusP$-hard for $k=2$, even for the adjacency matrices of planar graphs. As a consequence, unless the polynomial hierarchy collapses, it is impossible to compute the immanant $\Imm_\lambda \,A$ as a function of the Young diagram $\lambda$ in polynomial time, even if the width of $\lambda$ is restricted to be at most 2. In particular, if $\Ferm_2$ is in P, or if $\Imm_\lambda$ is in P for all $\lambda$ of width 2, then $\NP \subseteq \RP$ and there are randomized polynomial-time algorithms for NP-complete problems.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube