Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantum cluster algebras and fusion products (1109.6261v1)

Published 28 Sep 2011 in math.QA, math-ph, math.CO, math.MP, and math.RT

Abstract: $Q$-systems are recursion relations satisfied by the characters of the restrictions of special finite-dimensional modules of quantum affine algebras. They can also be viewed as mutations in certain cluster algebras, which have a natural quantum deformation. In this paper, we explain the relation in the simply-laced case between the resulting quantum $Q$-systems and the graded tensor product of Feigin and Loktev. We prove the graded version of the $M=N$ identities, and write expressions for these as non-commuting evaluated multi-residues of suitable products of solutions of the quantum $Q$-system. This leads to a simple reformulation of Feigin and Loktev's fusion coefficients as matrix elements in a representation of the quantum $Q$-system algebra.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube