Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Counterexample to rapid mixing of the Ge-Stefankovic Process (1109.5242v1)

Published 24 Sep 2011 in math.PR, cs.DS, and math.CO

Abstract: Ge and Stefankovic have recently introduced a novel two-variable graph polynomial. When specialised to a bipartite graphs G and evaluated at the point (1/2,1) this polynomial gives the number of independent sets in the graph. Inspired by this polynomial, they also introduced a Markov chain which, if rapidly mixing, would provide an efficient sampling procedure for independent sets in G. This sampling procedure in turn would imply the existence of efficient approximation algorithms for a number of significant counting problems whose complexity is so far unresolved. The proposed Markov chain is promising, in the sense that it overcomes the most obvious barrier to mixing. However, we show here, by exhibiting a sequence of counterexamples, that the mixing time of their Markov chain is exponential in the size of the input when the input is chosen from a particular infinite family of bipartite graphs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.