Papers
Topics
Authors
Recent
Search
2000 character limit reached

A graph polynomial for independent sets of bipartite graphs

Published 24 Nov 2009 in cs.DM and cs.DS | (0911.4732v4)

Abstract: We introduce a new graph polynomial that encodes interesting properties of graphs, for example, the number of matchings and the number of perfect matchings. Most importantly, for bipartite graphs the polynomial encodes the number of independent sets (#BIS). We analyze the complexity of exact evaluation of the polynomial at rational points and show that for most points exact evaluation is #P-hard (assuming the generalized Riemann hypothesis) and for the rest of the points exact evaluation is trivial. We conjecture that a natural Markov chain can be used to approximately evaluate the polynomial for a range of parameters. The conjecture, if true, would imply an approximate counting algorithm for #BIS, a problem shown, by [Dyer et al. 2004], to be complete (with respect to, so called, AP-reductions) for a rich logically defined sub-class of #P. We give a mild support for our conjecture by proving that the Markov chain is rapidly mixing on trees. As a by-product we show that the "single bond flip" Markov chain for the random cluster model is rapidly mixing on constant tree-width graphs.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.