Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Symmetry protected fractional Chern insulators and fractional topological insulators (1109.0226v4)

Published 1 Sep 2011 in cond-mat.str-el

Abstract: In this paper we construct fully symmetric wavefunctions for the spin-polarized fractional Chern insulators (FCI) and time-reversal-invariant fractional topological insulators (FTI) in two dimensions using the parton approach. We show that the lattice symmetry gives rise to many different FCI and FTI phases even with the same filling fraction $\nu$ (and the same quantized Hall conductance $\sigma_{xy}$ in FCI case). They have different symmetry-protected topological orders, which are characterized by different projective symmetry groups. We mainly focus on FCI phases which are realized in a partially filled band with Chern number one. The low-energy gauge groups of a generic $\sigma_{xy}=1/m\cdot e2/h$ FCI wavefunctions can be either $SU(m)$ or the discrete group $Z_m$, and in the latter case the associated low-energy physics are described by Chern-Simons-Higgs theories. We use our construction to compute the ground state degeneracy. Examples of FCI/FTI wavefunctions on honeycomb lattice and checkerboard lattice are explicitly given. Possible non-Abelian FCI phases which may be realized in a partially filled band with Chern number two are discussed. Generic FTI wavefunctions in the absence of spin conservation are also presented whose low-energy gauge groups can be either $SU(m)\times SU(m)$ or $Z_m\times Z_m$. The constructed wavefunctions also set up the framework for future variational Monte Carlo simulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)