Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Comparison of spectra of absolutely regular distributions and applications (1108.5237v1)

Published 26 Aug 2011 in math.FA

Abstract: We study the reduced Beurling spectra $sp_{\Cal {A},V} (F)$ of functions $F \in L1_{loc} (\jj,X)$ relative to certain function spaces $\Cal{A}\st L{\infty}(\jj,X)$ and $V\st L1 (\r)$ and compare them with other spectra including the weak Laplace spectrum. Here $\jj$ is $\r_+$ or $\r$ and $X$ is a Banach space. If $F$ belongs to the space $ \f'{ar}(\jj,X)$ of absolutely regular distributions and has uniformly continuous indefinite integral with $0\not\in sp{\A,\f(\r)} (F)$ (for example if F is slowly oscillating and $\A$ is ${0}$ or $C_0 (\jj,X)$), then $F$ is ergodic. If $F\in \f'{ar}(\r,X)$ and $M_h F (\cdot)= \int_0h F(\cdot+s)\,ds$ is bounded for all $h > 0$ (for example if $F$ is ergodic) and if $sp{C_0(\r,X),\f} (F)=\emptyset$, then ${F}*\psi \in C_0(\r,X)$ for all $\psi\in \f(\r)$. We show that tauberian theorems for Laplace transforms follow from results about reduced spectra. Our results are more general than previous ones and we demonstrate this through examples

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.