Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Ricci flow on open 4-manifolds with positive isotropic curvature (1108.2918v2)

Published 15 Aug 2011 in math.DG

Abstract: In this note we prove the following result: Let $X$ be a complete, connected 4-manifold with uniformly positive isotropic curvature, with bounded geometry and with no essential incompressible space form. Then $X$ is diffeomorphic to $\mathbb{S}4$, or $\mathbb{RP}4$, or $\mathbb{S}3\times \mathbb{S}1$, or $\mathbb{S}3\widetilde{\times} \mathbb{S}1$, or a possibly infinite connected sum of them. This extends work of Hamilton and Chen-Zhu to the noncompact case. The proof uses Ricci flow with surgery on complete 4-manifolds, and is inspired by recent work of Bessi$\grave{e}$res, Besson and Maillot.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)