Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Asymptotic Properties of Piecewise Contracting Maps (1108.1501v2)

Published 6 Aug 2011 in math.DS

Abstract: We study the asymptotic dynamics of maps which are piecewise contracting on a compact space. These maps are Lipschitz continuous, with Lipschitz constant smaller than one, when restricted to any piece of a finite and dense union of disjoint open pieces. We focus on the topological and the dynamical properties of the (global) attractor of the orbits that remain in this union. As a starting point, we show that the attractor consists of a finite set of periodic points when it does not intersect the boundary of a contraction piece, which complements similar results proved for more specific classes of piecewise contracting maps. Then, we explore the case where the attractor intersects these boundaries by providing examples that show the rich phenomenology of these systems. Due to the discontinuities, the asymptotic behaviour is not always properly represented by the dynamics in the attractor. Hence, we introduce generalized orbits to describe the asymptotic dynamics and its recurrence and transitivity properties. Our examples include transitive and recurrent attractors, that are either finite, countable, or a disjoint union of a Cantor set and a countable set. We also show that the attractor of a piecewise contracting map is usually a Lebesgue measure-zero set, and we give conditions ensuring that it is totally disconnected. Finally, we provide an example of piecewise contracting map with positive topological entropy and whose attractor is an interval.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.