2000 character limit reached
Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise (1108.0343v3)
Published 1 Aug 2011 in math.AP and math.PR
Abstract: Motivated by applications to a manifold of semilinear and quasilinear stochastic partial differential equations (SPDEs) we establish the existence and uniqueness of strong solutions to coercive and locally monotone SPDEs driven by L\'{e}vy processes. We illustrate the main result of our paper by showing how it can be applied to various types of SPDEs such as stochastic reaction-diffusion equations, stochastic Burgers type equations, stochastic 2D hydrodynamical systems and stochastic equations of non-Newtonian fluids, which generalize many existing results in the literature.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.