Multifractal finite-size-scaling and universality at the Anderson transition (1107.5736v1)
Abstract: We describe a new multifractal finite size scaling (MFSS) procedure and its application to the Anderson localization-delocalization transition. MFSS permits the simultaneous estimation of the critical parameters and the multifractal exponents. Simulations of system sizes up to L3=1203 and involving nearly 106 independent wavefunctions have yielded unprecedented precision for the critical disorder W_c=16.530 (16.524,16.536) and the critical exponent nu=1.590 (1.579,1.602). We find that the multifractal exponents Delta_q exhibit a previously predicted symmetry relation and we confirm the non-parabolic nature of their spectrum. We explain in detail the MFSS procedure first introduced in our Letter [Phys. Rev. Lett. 105, 046403 (2010)] and, in addition, we show how to take account of correlations in the simulation data. The MFSS procedure is applicable to any continuous phase transition exhibiting multifractal fluctuations in the vicinity of the critical point.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.