Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 19 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 87 tok/s
GPT OSS 120B 464 tok/s Pro
Kimi K2 171 tok/s Pro
2000 character limit reached

Skew-Varicose Instability in Two Dimensional Generalized Swift-Hohenberg Equations (1107.4917v2)

Published 25 Jul 2011 in math.DS

Abstract: We apply analytical and numerical methods to study the linear stability of stripe patterns in two generalizations of the two-dimensional Swift-Hohenberg equation that include coupling to a mean flow. A projection operator is included in our models to allow exact stripe solutions. In the generalized models, stripes become unstable to the skew-varicose, oscillatory skew-varicose and cross-roll instabilities, in addition to the usual Eckhaus and zigzag instabilities. We analytically derive stability boundaries for the skew-varicose instability in various cases, including several asymptotic limits. We also use numerical techniques to determine eigenvalues and hence stability boundaries of other instabilities. We extend our analysis to both stress-free and no-slip boundary conditions and we note a cross over from the behaviour characteristic of no-slip to that of stress-free boundaries as the coupling to the mean flow increases or as the Prandtl number decreases. Close to the critical value of the bifurcation parameter, the skew varicose instability has the same curvature as the Eckhaus instability provided the coupling to the mean flow is greater than a critical value. The region of stable stripes is completely eliminated by the cross-roll instability for large coupling to the mean flow.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.