Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convolution powers in the operator-valued framework (1107.2894v1)

Published 14 Jul 2011 in math.OA and math.PR

Abstract: We consider the framework of an operator-valued noncommutative probability space over a unital C*-algebra B. We show how for a B-valued distribution \mu one can define convolution powers with respect to free additive convolution and with respect to Boolean convolution, where the exponent considered in the power is a suitably chosen linear map \eta from B to B, instead of being a non-negative real number. More precisely, the Boolean convolution power is defined whenever \eta is completely positive, while the free additive convolution power is defined whenever \eta - 1 is completely positive (where 1 stands for the identity map on B). In connection to these convolution powers we define an evolution semigroup related to the Boolean Bercovici-Pata bijection. We prove several properties of this semigroup, including its connection to the B-valued free Brownian motion. We also obtain two results on the operator-valued analytic function theory related to the free additive convolution powers with exponent \eta. One of the results concerns analytic subordination for B-valued Cauchy-Stieltjes transforms. The other gives a B-valued version of the inviscid Burgers equation, which is satisfied by the Cauchy-Stieltjes transform of a B-valued free Brownian motion.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.