Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut (-1,1) (1107.2680v2)

Published 13 Jul 2011 in math.CA, math-ph, math.CV, and math.MP

Abstract: We use the recent findings of Cohl [arXiv:1105.2735] and evaluate two integrals involving the Gegenbauer polynomials: $\int_{-1}{x}\mathrm{d}t:(1-t{2}){\lambda-1/2}(x-t){-\kappa-1/2}C_{n}{\lambda}(t)$ and $\int_{x}{1}\mathrm{d}t:(1-t{2}){\lambda-1/2}(t-x){-\kappa-1/2}C_{n}{\lambda}(t)$, both with $\Real\lambda>-1/2$, $\Real\kappa<1/2$, $-1<x\<1$. The results are expressed in terms of the on-the-cut associated Legendre functions $P_{n+\lambda-1/2}^{\kappa-\lambda}(\pm x)$ and $Q_{n+\lambda-1/2}^{\kappa-\lambda}(x)$. In addition, we find closed-form representations of the series $\sum_{n=0}^{\infty}(\pm)^{n}[(n+\lambda)/\lambda]P_{n+\lambda-1/2}^{\kappa-\lambda}(\pm x)C_{n}^{\lambda}(t)$ and $\sum_{n=0}^{\infty}(\pm)^{n}[(n+\lambda)/\lambda]Q_{n+\lambda-1/2}^{\kappa-\lambda}(\pm x)C_{n}^{\lambda}(t)$, both with $\Real\lambda>-1/2$, $\Real\kappa<1/2$, $-1<t<1$, $-1<x<1$.

Summary

We haven't generated a summary for this paper yet.