Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Invariant Measures with Bounded Variation Densities for Piecewise Area Preserving Maps (1107.1523v2)

Published 7 Jul 2011 in math.DS

Abstract: We investigate the properties of absolutely continuous invariant probability measures (ACIPs), especially those measures with bounded variation densities, for piecewise area preserving maps (PAPs) on $\mathbb{R}d$. This class of maps unifies piecewise isometries (PWIs) and piecewise hyperbolic maps where Lebesgue measure is locally preserved. Using a functional analytic approach, we first explore the relationship between topological transitivity and uniqueness of ACIPs, and then give an approach to construct invariant measures with bounded variation densities for PWIs. Our results "partially" answer one of the fundamental questions posed in \cite{Goetz03} - to determine all invariant non-atomic probability Borel measures in piecewise rotations. When restricting PAPs to interval exchange transformations (IETs), our results imply that for non-uniquely ergodic IETs with two or more ACIPs, these ACIPs have very irregular densities, i.e., they have unbounded variation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.