Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Transitive conformal holonomy groups (1107.0617v1)

Published 4 Jul 2011 in math.DG

Abstract: For $(M,[g])$ a conformal manifold of signature $(p,q)$ and dimension at least three, the conformal holonomy group $\mathrm{Hol}(M,[g]) \subset O(p+1,q+1)$ is an invariant induced by the canonical Cartan geometry of $(M,[g])$. We give a description of all possible connected conformal holonomy groups which act transitively on the M\"obius sphere $S{p,q}$, the homogeneous model space for conformal structures of signature $(p,q)$. The main part of this description is a list of all such groups which also act irreducibly on $\R{p+1,q+1}$. For the rest, we show that they must be compact and act decomposably on $\R{p+1,q+1}$, in particular, by known facts about conformal holonomy the conformal class $[g]$ must contain a metric which is locally isometric to a so-called special Einstein product.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)