Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Stratifications of derived categories from tilting modules over tame hereditary algebras (1107.0444v1)

Published 3 Jul 2011 in math.RT and math.RA

Abstract: In this paper, we consider the endomorphism algebras of infinitely generated tilting modules of the form $R_{\mathcal U}\oplus R_{\mathcal U}/R$ over tame hereditary $k$-algebras $R$ with $k$ an arbitrary field, where $R_{\mathcal{U}}$ is the universal localization of $R$ at an arbitrary set $\mathcal{U}$ of simple regular $R$-modules, and show that the derived module category of $\End_R(R_{\mathcal U}\oplus R_{\mathcal U}/R)$ is a recollement of the derived module category $\D{R}$ of $R$ and the derived module category $\D{{\mathbb A}{\mathcal{U}}}$ of the ad`ele ring ${\mathbb A}{\mathcal{U}}$ associated with $\mathcal{U}$. When $k$ is an algebraically closed field, the ring ${\mathbb A}{\mathcal{U}}$ can be precisely described in terms of Laurent power series ring $k((x))$ over $k$. Moreover, if $\mathcal U$ is a union of finitely many cliques, we give two different stratifications of the derived category of $\End_R(R{\mathcal U}\oplus R_{\mathcal U}/R)$ by derived categories of rings, such that the two stratifications are of different finite lengths.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.