Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Insight Emerges in a Distributed, Content-addressable Memory (1106.3600v3)

Published 18 Jun 2011 in q-bio.NC and cs.AI

Abstract: We begin this chapter with the bold claim that it provides a neuroscientific explanation of the magic of creativity. Creativity presents a formidable challenge for neuroscience. Neuroscience generally involves studying what happens in the brain when someone engages in a task that involves responding to a stimulus, or retrieving information from memory and using it the right way, or at the right time. If the relevant information is not already encoded in memory, the task generally requires that the individual make systematic use of information that is encoded in memory. But creativity is different. It paradoxically involves studying how someone pulls out of their brain something that was never put into it! Moreover, it must be something both new and useful, or appropriate to the task at hand. The ability to pull out of memory something new and appropriate that was never stored there in the first place is what we refer to as the magic of creativity. Even if we are so fortunate as to determine which areas of the brain are active and how these areas interact during creative thought, we will not have an answer to the question of how the brain comes up with solutions and artworks that are new and appropriate. On the other hand, since the representational capacity of neurons emerges at a level that is higher than that of the individual neurons themselves, the inner workings of neurons is too low a level to explain the magic of creativity. Thus we look to a level that is midway between gross brain regions and neurons. Since creativity generally involves combining concepts from different domains, or seeing old ideas from new perspectives, we focus our efforts on the neural mechanisms underlying the representation of concepts and ideas. Thus we ask questions about the brain at the level that accounts for its representational capacity, i.e. at the level of distributed aggregates of neurons.

Citations (47)

Summary

We haven't generated a summary for this paper yet.