Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Goodness-of-Fit tests with Dependent Observations (1106.3016v2)

Published 15 Jun 2011 in q-fin.ST, cond-mat.stat-mech, and stat.AP

Abstract: We revisit the Kolmogorov-Smirnov and Cram\'er-von Mises goodness-of-fit (GoF) tests and propose a generalisation to identically distributed, but dependent univariate random variables. We show that the dependence leads to a reduction of the "effective" number of independent observations. The generalised GoF tests are not distribution-free but rather depend on all the lagged bivariate copulas. These objects, that we call "self-copulas", encode all the non-linear temporal dependences. We introduce a specific, log-normal model for these self-copulas, for which a number of analytical results are derived. An application to financial time series is provided. As is well known, the dependence is to be long-ranged in this case, a finding that we confirm using self-copulas. As a consequence, the acceptance rates for GoF tests are substantially higher than if the returns were iid random variables.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.