Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A self-similar field theory for 1D linear elastic continua and self-similar diffusion problem (1105.5322v1)

Published 26 May 2011 in math-ph, math.MP, math.PR, and physics.class-ph

Abstract: This paper is devoted to the analysis of some fundamental problems of linear elasticity in 1D continua with self-similar interparticle interactions. We introduce a self-similar continuous field approach where the self-similarity is reflected by equations of motion which are spatially non-local convolutions with power-function kernels (fractional integrals). We obtain closed-form expressions for the static displacement Green's function due to a unit $\delta$-force. In the dynamic framework we derive the solution of the {\it Cauchy problem} and the retarded Green's function. We deduce the distribution of a self-similar variant of diffusion problem with L\'evi-stable distributions as solutions with infinite mean fluctuations describing the statistics L\'evi-flights. We deduce a hierarchy of solutions for the self-similar Poisson's equation which we call "self-similar potentials". These non-local singular potentials are in a sense self-similar analogues to the 1D-Dirac's $\delta$-function. The approach can be the starting point to tackle a variety of scale invariant interdisciplinary problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.