Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-cluster algebras from non-orientable surfaces (1105.1560v2)

Published 8 May 2011 in math.RA and math.GT

Abstract: With any non necessarily orientable unpunctured marked surface (S,M) we associate a commutative algebra, called quasi-cluster algebra, equipped with a distinguished set of generators, called quasi-cluster variables, in bijection with the set of arcs and one-sided simple closed curves in (S,M). Quasi-cluster variables are naturally gathered into possibly overlapping sets of fixed cardinality, called quasi-clusters, corresponding to maximal non-intersecting families of arcs and one-sided simple closed curves in (S,M). If the surface S is orientable, then the quasi-cluster algebra is the cluster algebra associated with the marked surface (S,M) in the sense of Fomin, Shapiro and Thurston. We classify quasi-cluster algebras with finitely many quasi-cluster variables and prove that for these quasi-cluster algebras, quasi-cluster monomials form a linear basis. Finally, we attach to (S,M) a family of discrete integrable systems satisfied by quasi-cluster variables associated to arcs in the quasi-cluster algebra and we prove that solutions of these systems can be expressed in terms of cluster variables of type A.

Summary

We haven't generated a summary for this paper yet.