Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial recognition of cluster algebras of finite type (1507.03844v1)

Published 14 Jul 2015 in math.AC and cs.CC

Abstract: Cluster algebras are a recent topic of study and have been shown to be a useful tool to characterize structures in several knowledge fields. An important problem is to establish whether or not a given cluster algebra is of finite type. Using the standard definition, the problem is infeasible since it uses mutations that can lead to an infinite process. Barot, Geiss and Zelevinsky (2006) presented an easier way to verify if a given algebra is of finite type, by testing that all chordless cycles of the graph related to the algebra are cyclically oriented and that there exists a positive quasi-Cartan companion of the skew-symmetrizable matrix related to the algebra. We develop an algorithm that verifies these conditions and decides whether or not a cluster algebra is of finite type in polynomial time. The second part of the algorithm is used to prove that the more general problem to decide if a matrix has a positive quasi-Cartan companion is in NP.

Citations (2)

Summary

We haven't generated a summary for this paper yet.