Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Local Brownian property of the narrow wedge solution of the KPZ equation (1105.0952v3)

Published 4 May 2011 in math.PR, math-ph, and math.MP

Abstract: Let H(t,x) be the Hopf-Cole solution at time t of the Kardar-Parisi-Zhang (KPZ) equation starting with narrow wedge initial condition, i.e. the logarithm of the solution of the multiplicative stochastic heat equation starting from a Dirac delta. Also let H{eq}(t,x) be the solution at time t of the KPZ equation with the same noise, but with initial condition given by a standard two-sided Brownian motion, so that H{eq}(t,x)-H{eq}(0,x) is itself distributed as a standard two-sided Brownian motion. We provide a simple proof of the following fact: for fixed t, H(t,x)-(H(t,x)-H{eq}(t,0)) is locally of finite variation. Using the same ideas we also show that if the KPZ equation is started with a two-sided Brownian motion plus a Lipschitz function then the solution stays in this class for all time.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.