Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal coding for the deletion channel with small deletion probability (1104.5546v1)

Published 29 Apr 2011 in cs.IT and math.IT

Abstract: The deletion channel is the simplest point-to-point communication channel that models lack of synchronization. Input bits are deleted independently with probability d, and when they are not deleted, they are not affected by the channel. Despite significant effort, little is known about the capacity of this channel, and even less about optimal coding schemes. In this paper we develop a new systematic approach to this problem, by demonstrating that capacity can be computed in a series expansion for small deletion probability. We compute three leading terms of this expansion, and find an input distribution that achieves capacity up to this order. This constitutes the first optimal coding result for the deletion channel. The key idea employed is the following: We understand perfectly the deletion channel with deletion probability d=0. It has capacity 1 and the optimal input distribution is i.i.d. Bernoulli(1/2). It is natural to expect that the channel with small deletion probabilities has a capacity that varies smoothly with d, and that the optimal input distribution is obtained by smoothly perturbing the i.i.d. Bernoulli(1/2) process. Our results show that this is indeed the case. We think that this general strategy can be useful in a number of capacity calculations.

Citations (10)

Summary

We haven't generated a summary for this paper yet.