Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on the Deletion Channel Capacity (1211.2497v1)

Published 12 Nov 2012 in cs.IT and math.IT

Abstract: Memoryless channels with deletion errors as defined by a stochastic channel matrix allowing for bit drop outs are considered in which transmitted bits are either independently deleted with probability $d$ or unchanged with probability $1-d$. Such channels are information stable, hence their Shannon capacity exists. However, computation of the channel capacity is formidable, and only some upper and lower bounds on the capacity exist. In this paper, we first show a simple result that the parallel concatenation of two different independent deletion channels with deletion probabilities $d_1$ and $d_2$, in which every input bit is either transmitted over the first channel with probability of $\lambda$ or over the second one with probability of $1-\lambda$, is nothing but another deletion channel with deletion probability of $d=\lambda d_1+(1-\lambda)d_2$. We then provide an upper bound on the concatenated deletion channel capacity $C(d)$ in terms of the weighted average of $C(d_1)$, $C(d_2)$ and the parameters of the three channels. An interesting consequence of this bound is that $C(\lambda d_1+(1-\lambda))\leq \lambda C(d_1)$ which enables us to provide an improved upper bound on the capacity of the i.i.d. deletion channels, i.e., $C(d)\leq 0.4143(1-d)$ for $d\geq 0.65$. This generalizes the asymptotic result by Dalai as it remains valid for all $d\geq 0.65$. Using the same approach we are also able to improve upon existing upper bounds on the capacity of the deletion/substitution channel.

Citations (1)

Summary

We haven't generated a summary for this paper yet.