Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

More about Birkhoff's Invariant and Thorne's Hoop Conjecture for Horizons (1104.4504v1)

Published 22 Apr 2011 in hep-th and gr-qc

Abstract: A recent precise formulation of the hoop conjecture in four spacetime dimensions is that the Birkhoff invariant $\beta$ (the least maximal length of any sweepout or foliation by circles) of an apparent horizon of energy $E$ and area $A$ should satisfy $\beta \le 4 \pi E$. This conjecture together with the Cosmic Censorship or Isoperimetric inequality implies that the length $\ell$ of the shortest non-trivial closed geodesic satisfies $\ell2 \le \pi A$. We have tested these conjectures on the horizons of all four-charged rotating black hole solutions of ungauged supergravity theories and find that they always hold. They continue to hold in the the presence of a negative cosmological constant, and for multi-charged rotating solutions in gauged supergravity. Surprisingly, they also hold for the Ernst-Wild static black holes immersed in a magnetic field, which are asymptotic to the Melvin solution. In five spacetime dimensions we define $\beta$ as the least maximal area of all sweepouts of the horizon by two-dimensional tori, and find in all cases examined that $ \beta(g) \le \frac{16 \pi}{3} E$, which we conjecture holds quiet generally for apparent horizons. In even spacetime dimensions $D=2N+2$, we find that for sweepouts by the product $S1 \times S{D-4}$, $\beta$ is bounded from above by a certain dimension-dependent multiple of the energy $E$. We also find that $\ell{D-2}$ is bounded from above by a certain dimension-dependent multiple of the horizon area $A$. Finally, we show that $\ell{D-3}$ is bounded from above by a certain dimension-dependent multiple of the energy, for all Kerr-AdS black holes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.