Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Toeplitz corona problem for algebras of multipliers on a Nevanlinna-Pick space (1104.3821v1)

Published 19 Apr 2011 in math.FA and math.OA

Abstract: Suppose $\fA$ is an algebra of operators on a Hilbert space $H$ and $A_1,..., A_n \in \fA$. If the row operator $[A_1,..., A_n] \in B(H{(n)},H)$ has a right inverse in $B(H, H{(n)})$, the Toeplitz corona problem for $\fA$ asks if a right inverse can be found with entries in $\fA$. When $H$ is a complete Nevanlinna-Pick space and $\fA$ is a weakly-closed algebra of multiplication operators on $H$, we show that under a stronger hypothesis, the corona problem for $\fA$ has a solution. When $\fA$ is the full multiplier algebra of $H$, the Toeplitz corona theorems of Arveson, Schubert and Ball-Trent-Vinnikov are obtained. A tangential interpolation result for these algebras is developed in order to solve the Toeplitz corona problem.

Summary

We haven't generated a summary for this paper yet.