A Parallel Approximation Algorithm for Positive Semidefinite Programming
Abstract: Positive semidefinite programs are an important subclass of semidefinite programs in which all matrices involved in the specification of the problem are positive semidefinite and all scalars involved are non-negative. We present a parallel algorithm, which given an instance of a positive semidefinite program of size N and an approximation factor eps > 0, runs in (parallel) time poly(1/eps) \cdot polylog(N), using poly(N) processors, and outputs a value which is within multiplicative factor of (1 + eps) to the optimal. Our result generalizes analogous result of Luby and Nisan [1993] for positive linear programs and our algorithm is inspired by their algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.