Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PAC learnability versus VC dimension: a footnote to a basic result of statistical learning (1104.2097v1)

Published 12 Apr 2011 in cs.LG

Abstract: A fundamental result of statistical learnig theory states that a concept class is PAC learnable if and only if it is a uniform Glivenko-Cantelli class if and only if the VC dimension of the class is finite. However, the theorem is only valid under special assumptions of measurability of the class, in which case the PAC learnability even becomes consistent. Otherwise, there is a classical example, constructed under the Continuum Hypothesis by Dudley and Durst and further adapted by Blumer, Ehrenfeucht, Haussler, and Warmuth, of a concept class of VC dimension one which is neither uniform Glivenko-Cantelli nor consistently PAC learnable. We show that, rather surprisingly, under an additional set-theoretic hypothesis which is much milder than the Continuum Hypothesis (Martin's Axiom), PAC learnability is equivalent to finite VC dimension for every concept class.

Citations (12)

Summary

We haven't generated a summary for this paper yet.