Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PAC learnability of a concept class under non-atomic measures: a problem by Vidyasagar (1006.5090v1)

Published 26 Jun 2010 in cs.LG

Abstract: In response to a 1997 problem of M. Vidyasagar, we state a necessary and sufficient condition for distribution-free PAC learnability of a concept class $\mathscr C$ under the family of all non-atomic (diffuse) measures on the domain $\Omega$. Clearly, finiteness of the classical Vapnik-Chervonenkis dimension of $\mathscr C$ is a sufficient, but no longer necessary, condition. Besides, learnability of $\mathscr C$ under non-atomic measures does not imply the uniform Glivenko-Cantelli property with regard to non-atomic measures. Our learnability criterion is stated in terms of a combinatorial parameter $\VC({\mathscr C}\,{\mathrm{mod}}\,\omega_1)$ which we call the VC dimension of $\mathscr C$ modulo countable sets. The new parameter is obtained by thickening up'' single points in the definition of VC dimension to uncountableclusters''. Equivalently, $\VC(\mathscr C\modd\omega_1)\leq d$ if and only if every countable subclass of $\mathscr C$ has VC dimension $\leq d$ outside a countable subset of $\Omega$. The new parameter can be also expressed as the classical VC dimension of $\mathscr C$ calculated on a suitable subset of a compactification of $\Omega$. We do not make any measurability assumptions on $\mathscr C$, assuming instead the validity of Martin's Axiom (MA).

Citations (4)

Summary

We haven't generated a summary for this paper yet.