Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty (1104.1087v3)

Published 6 Apr 2011 in math.NA and math.OC

Abstract: An explicit algorithm for the minimization of an $\ell_1$ penalized least squares functional, with non-separable $\ell_1$ term, is proposed. Each step in the iterative algorithm requires four matrix vector multiplications and a single simple projection on a convex set (or equivalently thresholding). Convergence is proven and a 1/N convergence rate is derived for the functional. In the special case where the matrix in the $\ell_1$ term is the identity (or orthogonal), the algorithm reduces to the traditional iterative soft-thresholding algorithm. In the special case where the matrix in the quadratic term is the identity (or orthogonal), the algorithm reduces to a gradient projection algorithm for the dual problem. By replacing the projection with a simple proximity operator, other convex non-separable penalties than those based on an $\ell_1$-norm can be handled as well.

Summary

We haven't generated a summary for this paper yet.