Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On separably injective Banach spaces and Corrigendum to "On separably injective Banach spaces" [Adv. Math. 234 (2013) 192--216] (1103.6064v2)

Published 30 Mar 2011 in math.FA

Abstract: In this paper we deal with two weaker forms of injectivity which turn out to have a rich structure behind: separable injectivity and universal separable injectivity. We show several structural and stability properties of these classes of Banach spaces. We provide natural examples of (universally) separably injective spaces, including $\mathcal L_\infty$ ultraproducts built over countably incomplete ultrafilters, in spite of the fact that these ultraproducts are never injective. We obtain two fundamental characterizations of universally separably injective spaces: a) A Banach space $E$ is universally separably injective if and only if every separable subspace is contained in a copy of $\ell_\infty$ inside $E$. b) A Banach space $E$ is universally separably injective if and only if for every separable space $S$ one has $\Ext(\ell_\infty/S, E)=0$. The final Section of the paper focuses on special properties of 1-separably injective spaces. Lindenstrauss\ obtained in the middle sixties a result that can be understood as a proof that, under the continuum hypothesis, 1-separably injective spaces are 1-universally separably injective; he left open the question in {\sf ZFC}. We construct a consistent example of a Banach space of type $C(K)$ which is 1-separably injective but not 1-universally separably injective. We show that, under the continuum hypothesis, "to be universally separably injective" is not a $3$-space property, as we wrongly claimed in the paper mentioned in the title.

Summary

We haven't generated a summary for this paper yet.