Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Numerical Solutions of the spectral problem for arbitrary self-adjoint extensions of the 1D Schroedinger equation (1103.5588v2)

Published 29 Mar 2011 in math-ph, math.FA, math.MP, math.NA, and quant-ph

Abstract: A numerical algorithm to solve the spectral problem for arbitrary self-adjoint extensions of 1D regular Schroedinger operators is presented. It is shown that the set of all self-adjoint extensions of 1D regular Schroedinger operators is in one-to-one correspondence with the group of unitary operators on the finite dimensional Hilbert space of boundary data, and they are characterized by a generalized class of boundary conditions that include the well-known Dirichlet, Neumann, Robin, (quasi-)periodic boundary conditions, etc. The numerical algorithm is based on a nonlocal boundary extension of the finite element method and their convergence is proved. An appropriate basis of boundary functions must be introduced to deal with arbitrary boundary conditions and the conditioning of its computation is analyzed. Some significant numerical experiments are also discussed as well as the comparison with some standard algorithms. In particular it is shown that appropriate perturbations of standard boundary conditions for the free particle leads to the theoretically predicted result of very large absolute values of the negative groundlevels of the system as well as the localization of the corresponding eigenvectors at the boundary (edge states).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.