Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Ollivier's Ricci curvature, local clustering and curvature dimension inequalities on graphs (1103.4037v3)

Published 21 Mar 2011 in math.CO, math.DG, math.MG, and math.PR

Abstract: In this paper, we explore the relationship between one of the most elementary and important properties of graphs, the presence and relative frequency of triangles, and a combinatorial notion of Ricci curvature. We employ a definition of generalized Ricci curvature proposed by Ollivier in a general framework of Markov processes and metric spaces and applied in graph theory by Lin-Yau. In analogy with curvature notions in Riemannian geometry, we interpret this Ricci curvature as a control on the amount of overlap between neighborhoods of two neighboring vertices. It is therefore naturally related to the presence of triangles containing those vertices, or more precisely, the local clustering coefficient, that is, the relative proportion of connected neighbors among all the neighbors of a vertex. This suggests to derive lower Ricci curvature bounds on graphs in terms of such local clustering coefficients. We also study curvature dimension inequalities on graphs, building upon previous work of several authors.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.