Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Translational tilings by a polytope, with multiplicity (1103.3163v1)

Published 16 Mar 2011 in math.CO

Abstract: We study the problem of covering Rd by overlapping translates of a convex body P, such that almost every point of Rd is covered exactly k times. Such a covering of Euclidean space by translations is called a k-tiling. The investigation of tilings (i.e. 1-tilings in this context) by translations began with the work of Fedorov and Minkowski. Here we extend the investigations of Minkowski to k-tilings by proving that if a convex body k-tiles Rd by translations, then it is centrally symmetric, and its facets are also centrally symmetric. These are the analogues of Minkowski's conditions for 1-tiling polytopes. Conversely, in the case that P is a rational polytope, we also prove that if P is centrally symmetric and has centrally symmetric facets, then P must k-tile Rd for some positive integer k.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.