Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The holographic fluid dual to vacuum Einstein gravity (1103.3022v2)

Published 15 Mar 2011 in hep-th and gr-qc

Abstract: We present an algorithm for systematically reconstructing a solution of the (d+2)-dimensional vacuum Einstein equations from a (d+1)-dimensional fluid, extending the non-relativistic hydrodynamic expansion of Bredberg et al in arXiv:1101.2451 to arbitrary order. The fluid satisfies equations of motion which are the incompressible Navier-Stokes equations, corrected by specific higher derivative terms. The uniqueness and regularity of this solution is established to all orders and explicit results are given for the bulk metric and the stress tensor of the dual fluid through fifth order in the hydrodynamic expansion. We establish the validity of a relativistic hydrodynamic description for the dual fluid, which has the unusual property of having a vanishing equilibrium energy density. The gravitational results are used to identify transport coefficients of the dual fluid, which also obeys an interesting and exact constraint on its stress tensor. We propose novel Lagrangian models which realise key properties of the holographic fluid.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.