Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Maximal subbundles, quot schemes, and curve counting (1103.2169v1)

Published 10 Mar 2011 in math.AG

Abstract: Let $E$ be a rank 2, degree $d$ vector bundle over a genus $g$ curve $C$. The loci of stable pairs on $E$ in class $2[C]$ fixed by the scaling action are expressed as products of $\Quot$ schemes. Using virtual localization, the stable pairs invariants of $E$ are related to the virtual intersection theory of $\Quot E$. The latter theory is extensively discussed for an $E$ of arbitrary rank; the tautological ring of $\Quot E$ is defined and is computed on the locus parameterizing rank one subsheaves. In case $E$ has rank 2, $d$ and $g$ have opposite parity, and $E$ is sufficiently generic, it is known that $E$ has exactly $2g$ line subbundles of maximal degree. Doubling the zero section along such a subbundle gives a curve in the total space of $E$ in class $2[C]$. We relate this count of maximal subbundles with stable pairs/Donaldson-Thomas theory on the total space of $E$. This endows the residue invariants of $E$ with enumerative significance: they actually \emph{count} curves in $E$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube