Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Capacity of Memoryless Channels with Synchronization Errors (1102.2216v2)

Published 10 Feb 2011 in cs.IT and math.IT

Abstract: Memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol insertions and deletions in addition to random errors are considered. Such channels are information stable, hence their Shannon capacity exists. However, computation of the channel capacity is formidable, and only some upper and lower bounds on the capacity (for some special cases) exist. In this short paper, using a simple methodology, we prove that the channel capacity is a convex function of the stochastic channel matrix. Since the more widely studied model of an independent identically distributed (i.i.d.) deletion channel is a particular case, as an immediate corollary to this result we also argue that the i.i.d. deletion channel capacity is a convex function of the deletion probability. We further use this result to improve the existing capacity upper bounds on the deletion channel by a proper "convexification" argument. In particular, we prove that the capacity of the deletion channel, as the deletion probability d --> 1, is upper bounded by $0.4143(1-d)$ (which was also observed by a different (weaker) recent result).

Citations (1)

Summary

We haven't generated a summary for this paper yet.