Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double solids, categories and non-rationality (1102.2130v3)

Published 10 Feb 2011 in math.AG

Abstract: This paper suggests a new approach to questions of rationality of threefolds based on category theory. Following M. Ballard, D. Favero, L. Katzarkov (ArXiv:1012.0864) and D. Favero, L. Katzarkov (Noether--Lefschetz Spectra and Algebraic cycles, in preparation) we enhance constructions from A. Kuznetsov (arXiv:0904.4330) by introducing Noether--Lefschetz spectra --- an interplay between Orlov spectra (C. Oliva, Algebraic cycles and Hodge theory on generalized Reye congruences, Compos. Math. 92, No. 1 (1994) 1--22) and Hochschild homology. The main goal of this paper is to suggest a series of interesting examples where above techniques might apply. We start by constructing a sextic double solid $X$ with 35 nodes and torsion in $H3(X,\mathbb Z)$. This is a novelty --- after the classical example of Artin and Mumford (1972), this is the second example of a Fano threefold with a torsion in the 3-rd integer homology group. In particular $X$ is non-rational. We consider other examples as well --- $V_{10}$ with 10 singular points and double covering of quadric ramified in octic with 20 nodal singular points. After analyzing the geometry of their Landau--Ginzburg models we suggest a general non-rationality picture based on Homological Mirror Symmetry and category theory.

Summary

We haven't generated a summary for this paper yet.