Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On nodal Enriques surfaces and quartic double solids (1012.3530v1)

Published 16 Dec 2010 in math.AG

Abstract: We consider the class of singular double coverings $X \to \PP3$ ramified in the degeneration locus $D$ of a family of 2-dimensional quadrics. These are precisely the quartic double solids constructed by Artin and Mumford as examples of unirational but nonrational conic bundles. With such quartic surface $D$ one can associate an Enriques surface $S$ which is the factor of the blowup of $D$ by a natural involution acting without fixed points (such Enriques surfaces are known as nodal Enriques surfaces or Reye congruences). We show that the nontrivial part of the derived category of coherent sheaves on this Enriques surface $S$ is equivalent to the nontrivial part of the derived category of a minimal resolution of singularities of $X$.

Summary

We haven't generated a summary for this paper yet.