Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Discrete Choquet Integral for Ordered Systems (1102.1340v1)

Published 7 Feb 2011 in cs.DM and math.PR

Abstract: A model for a Choquet integral for arbitrary finite set systems is presented. The model includes in particular the classical model on the system of all subsets of a finite set. The general model associates canonical non-negative and positively homogeneous superadditive functionals with generalized belief functions relative to an ordered system, which are then extended to arbitrary valuations on the set system. It is shown that the general Choquet integral can be computed by a simple Monge-type algorithm for so-called intersection systems, which include as a special case weakly union-closed families. Generalizing Lov\'asz' classical characterization, we give a characterization of the superadditivity of the Choquet integral relative to a capacity on a union-closed system in terms of an appropriate model of supermodularity of such capacities.

Citations (23)

Summary

We haven't generated a summary for this paper yet.