Papers
Topics
Authors
Recent
2000 character limit reached

On the Complexity of Newman's Community Finding Approach for Biological and Social Networks

Published 4 Feb 2011 in physics.soc-ph, cs.CC, cs.DM, and cs.SI | (1102.0969v2)

Abstract: Given a graph of interactions, a module (also called a community or cluster) is a subset of nodes whose fitness is a function of the statistical significance of the pairwise interactions of nodes in the module. The topic of this paper is a model-based community finding approach, commonly referred to as modularity clustering, that was originally proposed by Newman and has subsequently been extremely popular in practice. Various heuristic methods are currently employed for finding the optimal solution. However, the exact computational complexity of this approach is still largely unknown. To this end, we initiate a systematic study of the computational complexity of modularity clustering. Due to the specific quadratic nature of the modularity function, it is necessary to study its value on sparse graphs and dense graphs separately. Our main results include a (1+\eps)-inapproximability for dense graphs and a logarithmic approximation for sparse graphs. We make use of several combinatorial properties of modularity to get these results. These are the first non-trivial approximability results beyond the previously known NP-hardness results.

Citations (38)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.