A Human-Centric Approach to Group-Based Context-Awareness (1101.5460v1)
Abstract: The emerging need for qualitative approaches in context-aware information processing calls for proper modeling of context information and efficient handling of its inherent uncertainty resulted from human interpretation and usage. Many of the current approaches to context-awareness either lack a solid theoretical basis for modeling or ignore important requirements such as modularity, high-order uncertainty management and group-based context-awareness. Therefore, their real-world application and extendability remains limited. In this paper, we present f-Context as a service-based context-awareness framework, based on language-action perspective (LAP) theory for modeling. Then we identify some of the complex, informational parts of context which contain high-order uncertainties due to differences between members of the group in defining them. An agent-based perceptual computer architecture is proposed for implementing f-Context that uses computing with words (CWW) for handling uncertainty. The feasibility of f-Context is analyzed using a realistic scenario involving a group of mobile users. We believe that the proposed approach can open the door to future research on context-awareness by offering a theoretical foundation based on human communication, and a service-based layered architecture which exploits CWW for context-aware, group-based and platform-independent access to information systems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.