Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Pontryagin invariants and integral formulas for Milnor's triple linking number (1101.3374v1)

Published 18 Jan 2011 in math.GT, math-ph, math.AT, math.DG, math.MP, and math.SG

Abstract: To each three-component link in the 3-sphere, we associate a geometrically natural characteristic map from the 3-torus to the 2-sphere, and show that the pairwise linking numbers and Milnor triple linking number that classify the link up to link homotopy correspond to the Pontryagin invariants that classify its characteristic map up to homotopy. This can be viewed as a natural extension of the familiar fact that the linking number of a two-component link in 3-space is the degree of its associated Gauss map from the 2-torus to the 2-sphere. When the pairwise linking numbers are all zero, we give an integral formula for the triple linking number analogous to the Gauss integral for the pairwise linking numbers. The integrand in this formula is geometrically natural in the sense that it is invariant under orientation-preserving rigid motions of the 3-sphere, while the integral itself can be viewed as the helicity of a related vector field on the 3-torus.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.