Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Arthur Merlin Games in Communication Complexity (1101.0523v1)

Published 3 Jan 2011 in cs.CC and quant-ph

Abstract: We show several results related to interactive proof modes of communication complexity. First we show lower bounds for the QMA-communication complexity of the functions Inner Product and Disjointness. We describe a general method to prove lower bounds for QMA-communication complexity, and show how one can 'transfer' hardness under an analogous measure in the query complexity model to the communication model using Sherstov's pattern matrix method. Combining a result by Vereshchagin and the pattern matrix method we find a communication problem with AM-communication complexity $O(\log n)$, PP-communication complexity $\Omega(n{1/3})$, and QMA-communication complexity $\Omega(n{1/6})$. Hence in the world of communication complexity noninteractive quantum proof systems are not able to efficiently simulate co-nondeterminism or interaction. These results imply that the related questions in Turing machine complexity theory cannot be resolved by 'algebrizing' techniques. Finally we show that in MA-protocols there is an exponential gap between one-way protocols and two-way protocols (this refers to the interaction between Alice and Bob). This is in contrast to nondeterministic, AM-, and QMA-protocols, where one-way communication is essentially optimal.

Citations (43)

Summary

We haven't generated a summary for this paper yet.