Papers
Topics
Authors
Recent
Search
2000 character limit reached

Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element

Published 17 Dec 2010 in math.CO and math.GR | (1012.3825v3)

Abstract: When W is a finite reflection group, the noncrossing partition lattice NCP_W of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in NCP_W as a generalised Fuss-Catalan number, depending on the invariant degrees of W. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of NCP_W as fibers of a Lyashko-Looijenga covering (LL), constructed from the geometry of the discriminant hypersurface of W. We study algebraically the map LL, describing the factorisations of its discriminant and its Jacobian. As byproducts, we generalise a formula stated by K. Saito for real reflection groups, and we deduce new enumeration formulas for certain factorisations of a Coxeter element of W.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.