Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Defining and Computing Topological Persistence for 1-cocycles (1012.3763v2)

Published 16 Dec 2010 in math.AT, cs.CG, and cs.DS

Abstract: The concept of topological persistence, introduced recently in computational topology, finds applications in studying a map in relation to the topology of its domain. Since its introduction, it has been extended and generalized in various directions. However, no attempt has been made so far to extend the concept of topological persistence to a generalization of `maps' such as cocycles which are discrete analogs of closed differential forms, a well known concept in differential geometry. We define a notion of topological persistence for 1-cocycles in this paper and show how to compute its relevant numbers. It turns out that, instead of the standard persistence, one of its variants which we call level persistence can be leveraged for this purpose. It is worth mentioning that 1-cocyles appear in practice such as in data ranking or in discrete vector fields.

Citations (6)

Summary

We haven't generated a summary for this paper yet.