Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rank-based persistence

Published 22 May 2019 in math.AT, cs.CG, and math.CT | (1905.09151v1)

Abstract: Persistence has proved to be a valuable tool to analyze real world data robustly. Several approaches to persistence have been attempted over time, some topological in flavor, based on the vector space-valued homology functor, other combinatorial, based on arbitrary set-valued functors. To unify the study of topological and combinatorial persistence in a common categorical framework, we give axioms for a generalized rank function on objects in a target category, so that functors to that category induce persistence functions. We port the interleaving and bottleneck distances to this novel framework and generalize classical equalities and inequalities. Unlike sets and vector spaces, in many categories the rank of an object does not identify it up to isomorphism: to preserve information about the structure of persistence modules, we define colorable ranks, persistence diagrams and prove the equality between multicolored bottleneck distance and interleaving distance in semisimple Abelian categories. To illustrate our framework in practice, we give examples of multicolored persistent homology on filtered topological spaces with a group action and labeled point cloud data.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.